Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.443
Filter
1.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710054

ABSTRACT

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Subject(s)
Inflammation , Microglia , NF-kappa B , Netrin-1 , Neuropeptides , Pyroptosis , Signal Transduction , rac1 GTP-Binding Protein , Animals , Pyroptosis/physiology , Pyroptosis/drug effects , Microglia/metabolism , Mice , Netrin-1/metabolism , rac1 GTP-Binding Protein/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Pain/metabolism , Cell Line , Lipopolysaccharides
2.
Clin Exp Med ; 24(1): 96, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717644

ABSTRACT

Primary Sjögren's Syndrome (pSS) falls within the category of connective tissue diseases, characterized by the presence of autoantibodies such as antinuclear antibodies (ANA). However, according to the classification criteria for pSS, some patients may exhibit a negative result for autoantibodies. Patients with a negative result for autoantibodies may lack typical features of connective tissue diseases, and the immunological state as well as the extent of organ involvement and damage may differ from those with positive autoantibodies. This study aims to compare the clinical phenotypes of patients with positive and negative autoantibodies, providing insights for disease classification and treatment selection for clinicians. Patients with pSS were grouped based on the presence and titers of their autoantibodies. Subsequently, differences in organ damage and laboratory indicators were compared between these groups, aiming to analyze the value of autoantibody titers in assessing the condition of pSS. (1) Patients with positive ANA exhibited elevated levels of inflammatory indicators, including ESR, IgG levels, lip gland biopsy pathology grade, and overall organ involvement, in comparison with patients with negative ANA (P < 0.05). Furthermore, ANA-positivity correlated with a higher occurrence of multi-organ damage, particularly affecting the skin, mucous membranes, and the hematological system (P < 0.05). (2) As ANA titers increased, patients demonstrated elevated levels of IgG and an escalation in organ involvement (P < 0.05). (3) Patients in the positive autoantibody group (positive for antinuclear antibodies, anti-SSA, or anti-SSB antibodies) had higher IgG levels compared to the negative group (P < 0.05). (4) Patients with positive anti-SSA and anti-SSB antibodies exhibited higher levels of inflammatory indicators and IgG compared to other patients (P < 0.05); however, no significant differences were observed in terms of organ involvement and organ damage. Patients with positive ANA in pSS typically exhibit higher levels of inflammation and an increased likelihood of experiencing multi-organ damage. Furthermore, as the ANA titers increase, both inflammation levels and the risk of multi-organ damage also escalate. Additionally, the presence of anti-SSA and anti-SSB antibodies may contribute to an elevated risk of increased inflammation levels, but does not increase the risk of organ damage.


Subject(s)
Antibodies, Antinuclear , Sjogren's Syndrome , Humans , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Sjogren's Syndrome/blood , Female , Middle Aged , Male , Adult , Aged , Inflammation/immunology , Inflammation/pathology , Immunoglobulin G/blood
3.
PLoS One ; 19(5): e0303060, 2024.
Article in English | MEDLINE | ID: mdl-38723008

ABSTRACT

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Subject(s)
Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
4.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724533

ABSTRACT

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Subject(s)
Anemia, Aplastic , CD47 Antigen , Eicosapentaenoic Acid , Animals , Anemia, Aplastic/pathology , Mice , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Apoptosis/drug effects , Phagocytosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Monocytes/metabolism , Monocytes/drug effects , Inflammation/pathology , Male , Efferocytosis
5.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Male , Exosomes/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Prostate/pathology , Prostate/metabolism , Pelvic Pain , Inflammation/genetics , Inflammation/pathology , Mice , MAP Kinase Signaling System
6.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727269

ABSTRACT

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Subject(s)
Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
7.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727309

ABSTRACT

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Subject(s)
Cholesterol , Endothelial Cells , Inflammation , Animals , Humans , Endothelial Cells/metabolism , Mice , Inflammation/pathology , Inflammation/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Arteries/metabolism , Arteries/pathology , Transcriptome/genetics , Aorta/metabolism , Aorta/pathology , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , I-kappa B Kinase/metabolism , Male , NF-kappa B/metabolism
8.
Cells ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38727321

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , Muscular Atrophy, Spinal , Animals , Lipopolysaccharides/pharmacology , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Mice, Inbred C57BL , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Inflammation/pathology
9.
PLoS One ; 19(5): e0303150, 2024.
Article in English | MEDLINE | ID: mdl-38728304

ABSTRACT

The Ang-(1-7)/MasR axis is critically involved in treating several diseases; For example, Ang-(1-7) improves inflammatory response and neurological function after traumatic brain injury and inhibits post-inflammatory hypothermia. However, its function in traumatic brain injury (TBI) combined with seawater immersion hypothermia remains unclear. Here, we used a mice model of hypothermic TBI and a BV2 cell model of hypothermic inflammation to investigate whether the Ang-(1-7)/MasR axis is involved in ameliorating hypothermic TBI. Quantitative reverse transcription PCR, western blotting assay, and immunofluorescence assay were performed to confirm microglia polarization and cytokine regulation. Hematoxylin-eosin staining, Nissl staining, and immunohistochemical assay were conducted to assess the extent of hypothermic TBI-induced damage and the ameliorative effect of Ang-(1-7) in mice. An open field experiment and neurological function scoring with two approaches were used to assess the degree of recovery and prognosis in mice. After hypothermic TBI establishment in BV2 cells, the Ang-(1-7)/MasR axis induced phenotypic transformation of microglia from M1 to M2, inhibited IL-6 and IL-1ß release, and upregulated IL-4 and IL-10 levels. After hypothermic TBI development in mice, intraperitoneally administered Ang-(1-7) attenuated histological damage and promoted neurological recovery. These findings suggest that hypothermia exacerbates TBI-induced damage and that the Ang-(1-7)/MasR axis can ameliorate hypothermic TBI and directly affect prognosis.


Subject(s)
Angiotensin I , Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Peptide Fragments , Animals , Microglia/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Phenotype , Disease Models, Animal , Hypothermia, Induced , Cytokines/metabolism , Cell Line , Hypothermia/metabolism , Inflammation/pathology , Inflammation/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731899

ABSTRACT

The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.


Subject(s)
CX3C Chemokine Receptor 1 , Carcinogenesis , Chemokine CX3CL1 , Inflammation , Neovascularization, Pathologic , Signal Transduction , Humans , Chemokine CX3CL1/metabolism , Neovascularization, Pathologic/metabolism , Inflammation/metabolism , Inflammation/pathology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/etiology , Tumor Microenvironment , Angiogenesis
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732000

ABSTRACT

Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Inflammation , Liver Neoplasms , Mitochondria , Pyroptosis , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Extracellular Vesicles/metabolism , Inflammation/metabolism , Inflammation/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Mitochondria/metabolism , Animals
12.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732021

ABSTRACT

The most common manifestation of endometriosis, a condition characterized by the presence of endometrial-like tissue outside of the uterus, is the endometrioma, a cystic ovarian lesion. It is a commonly occurring condition associated with chronic pelvic pain exacerbated prior to and during menstruation, as well as infertility. The exact pathomechanisms of the endometrioma are still not fully understood. Emerging evidence suggests a pivotal role of immune dysregulation in the pathogenesis of endometriomas, primarily influencing both local and systemic inflammatory processes. Among the factors implicated in the creation of the inflammatory milieu associated with endometriomas, alterations in both serum and local levels of several cytokines stand out, including IL-6, IL-8, and IL-1ß, along with abnormalities in the innate immune system. While numerous signaling pathways have been suggested to play a role in the inflammatory process linked to endometriomas, only NF-κB has been conclusively demonstrated to be involved. Additionally, increased oxidative stress, both resulting from and contributing to endometriomas, has been identified as a primary driver of both systemic and local inflammation associated with the condition. This article reviews the current understanding of immune dysfunctions in the endometrioma and their implications for inflammation.


Subject(s)
Endometriosis , Inflammation , Humans , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/metabolism , Female , Inflammation/immunology , Inflammation/pathology , Cytokines/metabolism , Oxidative Stress , Signal Transduction , Immunity, Innate , Animals
13.
J Transl Med ; 22(1): 457, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745204

ABSTRACT

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Subject(s)
Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Resveratrol/pharmacology , Resveratrol/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Humans , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Membrane Proteins/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Male
14.
Acta Neuropathol ; 147(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722375

ABSTRACT

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Subject(s)
Aging , Cellular Senescence , Multiple Sclerosis , Oligodendroglia , Humans , Oligodendroglia/pathology , Oligodendroglia/metabolism , Cellular Senescence/physiology , Aging/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Adult , Aged , Middle Aged , Male , Female , Young Adult , Inflammation/pathology , Inflammation/metabolism , White Matter/pathology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21
15.
Sci Rep ; 14(1): 10452, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714796

ABSTRACT

The purpose of this study is to evaluate loose suture-related inflammation and activation of conjunctiva-associated lymphoid tissue (CALT) in patients after keratoplasty. The patients who were treated with keratoplasty at the First Affiliated Hospital of Harbin Medical University between 2015 and 2022 were recruited into the study. We evaluated the time and location of loose suture development in patients after keratoplasty. In addition, in vivo confocal microscopy was used to evaluate the activation of CALT and the accumulation of inflammatory cells around loose sutures. Meso Scale Discovery assay detection kits were used to evaluate the inflammatory cytokines in the tears of patients before and after the loose suture was removed. In this study, we collected the information from 212 cases (212 eyes) who had PK (126 eyes) and DALK-treated (86 eyes) for corneal transplantation, including 124 males and 88 females, aged 14-84 years old. The average age was 50.65 ± 16.81 years old. Corneal sutures were more prone to loose at 3 months and 6 months after keratoplasty, and the frequent sites were at 5 and 6 o'clock. An increased number of inflammatory cells could be observed around the loose sutures than normal sutures (P < 0.001). In CALT, the density of diffuse lymphocytes (P < 0.001), follicles (P < 0.001), and parafollicular lymphocytes (P < 0.001) were higher and the central reflection of the follicles (P < 0.001) was stronger when suture loosening happened. The levels of inflammatory cytokines such as IL-1ß (P = 0.003), IL-8 (P = 0.012), and TNF-α (P < 0.001) were higher in the tears of the patients with loose sutures. The activation of CALT was partly settled after removing the loose sutures. In conclusion, loose sutures after corneal transplantation can lead to increased infiltration of inflammatory cells, activation of CALT, and increased secretion of inflammatory cytokines in the tears of patients. Regular follow-up to identify and solve the problem in time can avoid suture-related complications.


Subject(s)
Conjunctiva , Corneal Transplantation , Lymphoid Tissue , Sutures , Humans , Female , Male , Middle Aged , Adult , Aged , Conjunctiva/metabolism , Conjunctiva/pathology , Conjunctiva/surgery , Aged, 80 and over , Corneal Transplantation/adverse effects , Adolescent , Sutures/adverse effects , Young Adult , Lymphoid Tissue/metabolism , Lymphoid Tissue/pathology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/etiology , Tears/metabolism
16.
J Cell Mol Med ; 28(9): e18350, 2024 May.
Article in English | MEDLINE | ID: mdl-38700030

ABSTRACT

Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.


Subject(s)
Dental Pulp , Inflammation , Macrophages , Tooth Movement Techniques , Dental Pulp/metabolism , Dental Pulp/pathology , Animals , Macrophages/metabolism , Inflammation/pathology , Inflammation/metabolism , Mice , Cell Polarity , Male , Vascular Endothelial Growth Factor A/metabolism , Pulpitis/pathology , Pulpitis/metabolism , Macrophage Activation
17.
BMC Med Genomics ; 17(1): 124, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711024

ABSTRACT

BACKGROUND: Glycogen storage disease (GSD) is a disease caused by excessive deposition of glycogen in tissues due to genetic disorders in glycogen metabolism. Glycogen storage disease type I (GSD-I) is also known as VonGeirk disease and glucose-6-phosphatase deficiency. This disease is inherited in an autosomal recessive manner, and both sexes can be affected. The main symptoms include hypoglycaemia, hepatomegaly, acidosis, hyperlipidaemia, hyperuricaemia, hyperlactataemia, coagulopathy and developmental delay. CASE PRESENTATION: Here, we present the case of a 13-year-old female patient with GSD Ia complicated with multiple inflammatory hepatic adenomas. She presented to the hospital with hepatomegaly, hypoglycaemia, and epistaxis. By clinical manifestations and imaging and laboratory examinations, we suspected that the patient suffered from GSD I. Finally, the diagnosis was confirmed by liver pathology and whole-exome sequencing (WES). WES revealed a synonymous mutation, c.648 G > T (p.L216 = , NM_000151.4), in exon 5 and a frameshift mutation, c.262delG (p.Val88Phefs*14, NM_000151.4), in exon 2 of the G6PC gene. According to the pedigree analysis results of first-generation sequencing, heterozygous mutations of c.648 G > T and c.262delG were obtained from the patient's father and mother. Liver pathology revealed that the solid nodules were hepatocellular hyperplastic lesions, and immunohistochemical (IHC) results revealed positive expression of CD34 (incomplete vascularization), liver fatty acid binding protein (L-FABP) and C-reactive protein (CRP) in nodule hepatocytes and negative expression of ß-catenin and glutamine synthetase (GS). These findings suggest multiple inflammatory hepatocellular adenomas. PAS-stained peripheral hepatocytes that were mostly digested by PAS-D were strongly positive. This patient was finally diagnosed with GSD-Ia complicated with multiple inflammatory hepatic adenomas, briefly treated with nutritional therapy after diagnosis and then underwent living-donor liver allotransplantation. After 14 months of follow-up, the patient recovered well, liver function and blood glucose levels remained normal, and no complications occurred. CONCLUSION: The patient was diagnosed with GSD-Ia combined with multiple inflammatory hepatic adenomas and received liver transplant treatment. For childhood patients who present with hepatomegaly, growth retardation, and laboratory test abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia, a diagnosis of GSD should be considered. Gene sequencing and liver pathology play important roles in the diagnosis and typing of GSD.


Subject(s)
Glycogen Storage Disease Type I , Liver Neoplasms , Liver Transplantation , Humans , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/pathology , Female , Adolescent , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/complications , Adenoma/genetics , Adenoma/complications , Adenoma/pathology , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/complications , Adenoma, Liver Cell/pathology , Inflammation/genetics , Inflammation/pathology , Inflammation/complications
18.
FASEB J ; 38(10): e23670, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747803

ABSTRACT

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Subject(s)
Glucuronidase , Inflammation , Neoplasms , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Glucuronidase/metabolism , Glucuronidase/genetics , Mice , Endoplasmic Reticulum Stress
19.
Exp Hematol ; 129: 104125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38743005

ABSTRACT

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Myeloid-Derived Suppressor Cells/metabolism , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/blood , Female , Male , Middle Aged , Aged , Prognosis , Inflammation/pathology , Adult , Prospective Studies , Aged, 80 and over , Cytokines/blood , Immunotherapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
20.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727958

ABSTRACT

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Subject(s)
Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cell Survival/genetics , Cell Survival/drug effects , Signal Transduction/genetics , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...